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Abstract:  28 

The temporal and spatial distribution of regional irrigation water productivity (RIWP) is crucial 29 

for making agricultural related decisions, especially in arid irrigated areas with complex cropping 30 

patterns. Thus, we developed a new RIWP model for an irrigated agricultural area with complex 31 

cropping patterns. The model couples the irrigation and drainage driven soil water and salinity 32 

dynamics and shallow groundwater movement, to quantify the temporal and spatial distributions 33 

of the target hydrological and biophysical variables. We divided the study area into 1 km×1km 34 

hydrological response units (HRUs). In each HRU, we considered four land-use types: sunflower 35 

fields, wheat fields, maize fields and uncultivated lands. And we coupled the regional soil 36 

hydrological processes and groundwater flow by taking a weighted average of the water exchange 37 

between unsaturated soil and groundwater under different land-use types. The RIWP model was 38 

calibrated and validated using eight years of hydrological variables obtained from regional 39 

observation sites in a typical arid irrigation area of North China, Hetao Irrigation District. The 40 

model reasonably well simulated soil moisture and salinity, groundwater table depths, salinity, and 41 

discharge, and regional evapotranspiration. Sensitivity analysis indicates that soil evaporation 42 

coefficient and specific yield are the key parameters for RIWP simulation. The results showed 43 

that, from 2006 to 2013, RIWP decreased from maize to sunflower to wheat. It was found that the 44 

maximum RIWP can be reached when groundwater table depth is in the range of 2 m to 4 m, 45 

regardless of irrigation water depths. This implies the importance of groundwater table control on 46 

RIWP. Overall, our distributed RIWP model can effectively simulate the temporal and spatial 47 

distribution of RIWP and provide critical water allocation suggestions for decision makers.  48 

Keywords: Arid irrigated area, regional water productivity estimation, shallow groundwater, 49 

irrigation process, drainage, cropping patterns 50 

1. Introduction  51 

Under the increasing food demand of growing populations worldwide, water resources is limiting 52 

food production in many areas (Kijne et al., 2003; Fraiture and Wichelns, 2010). Especially, in arid 53 

and semi-arid regions of the world, where irrigated agriculture accounts for about 90% of the total 54 
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water use (Jiang et al., 2015; Gao et al., 2017), water deficit and related land salinity are the two 55 

major limitations to agricultural production (Williams, 1999; Xue et al., 2018). To maximize 56 

agricultural production, the improvement of irrigation water productivity (IWP) is vital 57 

(Bessembinder et al., 2005; Surendran et al., 2016). IWP is defined as the crop yield per cubic meter 58 

of irrigation water supplied (Singh et al., 2004). 59 

Furthermore, by changing hydrological processes, irrigation and drainage affect water and salt 60 

dynamics in crop root zone, and, eventually, crop production (Morison et al., 2008; Bouman et al., 61 

2007). Specifically, RIWP analysis requires the quantification of the complex agro-hydrological 62 

processes, including soil water and salt dynamics, groundwater movement, crop water use and crop 63 

production.  64 

Various methods have been used to evaluate IWP, such as field measurements (Talebnejad et al., 65 

2015; Gowing et al., 2009), remote sensing (Zwart and Bastiaanssen, 2007), and distributed 66 

hydrological models (Singh, 2005; Jiang et al., 2015; Steduto et al., 2009). Field experiments have 67 

been widely used to evaluate the effect of water management on IWP (Talebnejad et al., 2015; 68 

Gowing et al., 2009), but field experiments are expensive and time consuming, making it unsuitable 69 

for regional evaluation of IWP. Conveniently revealing temporal and spatial distributions of 70 

evapotranspiration (ET) and crop yields, remote sensing is commonly used to quantify regional IWP 71 

(Thenkabail and Prasad, 2008). However, remote sensing is look at seeing the past IWP distribution, 72 

but cannot readily predict the impacts of water management practices on IWP.  73 

  Recently, distributed integrated crop and hydrologic models have been widely used to simulate 74 

the complex agro-hydrological processes coupled with salt dynamics and crop production (Aghdam 75 

et al., 2013; Noory et al., 2011; van Dam, 2008; Vanuytrecht et al., 2007). Taking advantages of 76 

geographic information systems (GIS), distributed integrated crop and hydrologic models provide 77 

precise simulations of regional hydrological processes and crop growth, by incorporating the 78 

heterogeneity of soil moisture, salinity and texture, groundwater table depth and salinity, and 79 

cropping patterns (Amor et al., 2002; Bastiaanssen et al., 2003a; Jiang et al., 2015; Nazarifar et al., 80 

2012; Xue et al., 2017). 81 

There are two types of distributed hydrologic models that are used to integrate with crop models: 82 

numerical distributed models, such as SWAT and MODFLOW, and simplified distributed models 83 
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based on water balance equations. MODFLOW is commonly used for groundwater dynamics 84 

simulation (Kim et al., 2008). But it is limited in well-monitored large irrigation areas, due to the 85 

large number of parameters and input data required. SWAT is used to simulate land surface 86 

hydrologic and crop growth processes. It relies on the digital elevation model (DEM) to delineate 87 

surface water flow pathways. However, many irrigation areas are quite flat, and surface water flow 88 

pathways are controlled by irrigation and drainage systems, instead of terrain elevation differences. 89 

Furthermore, SWAT alone does not describe the complex interactions between groundwater and soil 90 

water, which are fundamental in arid and semi-arid areas with shallow groundwater. 91 

Simplified distributed models often employ mass balance equations to describe the soil water and 92 

salt dynamics (Sharma, 1999; Sivapalan et al., 2015), which means less input parameters, and larger 93 

spatial grids and temporal steps. However, the large spatial grids can hardly reflect the regional 94 

complex cropping pattern heterogeneity, and the large temporal steps cannot capture daily soil water 95 

and salt dynamics which is essential for crop growth simulation. 96 

After all, there are still two big challenges for developing a distributed integrated irrigation water 97 

productivity models in irrigation areas. First, the networks of irrigation canals and drainage ditches 98 

cause spatial heterogeneity in irrigation, drainage, deep percolation, canal seepage and groundwater 99 

table depth within the irrigation area. But previous studies have overlooked the important role of 100 

the networks of irrigation canals and drainage ditches in RIWP evaluations. Second, the multi-scale 101 

matching problem comes out when coupling unsaturated and saturated zone in irrigation areas with 102 

complex cropping patterns, as the spatial heterogeneity of cropping patterns is much stronger than 103 

that of groundwater table depth. However, most of the existing distributed hydrological models 104 

simulated the hydrological processes within the same hydrological response unit (HRU) between 105 

unsaturated and saturated zones independently, but overlooked the lateral exchange of groundwater 106 

between adjacent HRUs. 107 

Therefore, the main objectives of our study are to (1) develop a RIWP model framework coupling 108 

the irrigation and drainage processes, soil water and salt dynamics, crop water and salt response 109 

processes, and lateral movement of groundwater and salt; and (2) analyze the distributed RIWP of 110 

the study area and find the effects of crop type, irrigation water depth and groundwater table depth 111 

on RIWP. 112 
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2. Methods 113 

We will present a four-module integrated RIWP model, the coupling between the modules and one 114 

case study evaluating the model performance. 115 

2.1 Regional irrigation water productivity model  116 

General descriptions will be given for the four modules and their integration, as well as the division 117 

and connections of HRUs, and boundary conditions of the model. Then, detailed descriptions will 118 

be given for each of the four modules: irrigation system module, drainage system module, 119 

groundwater module, and field scale IWP module. 120 

2.1.1 General descriptions 121 

A four-module integrated RIWP model was developed, to simulate the complex system including 122 

water supply from irrigation open canals, field crop water consumption, groundwater drainage into 123 

open ditches, and groundwater lateral flow. 124 

(1) Four modules and their integration 125 

The developed RIWP model couples an irrigation system module, a drainage system module, a 126 

groundwater module and a field scale IWP evaluation module (Fig. 1). The irrigation system 127 

module simulates the water flow along canals and the canal seepage to groundwater (the recharge 128 

of the groundwater module), and it provides the amount of water available for field scale 129 

irrigation. The drainage system module simulates the drainage to main drainage ditches from 130 

groundwater, and this is the discharge of the groundwater module. The groundwater module is 131 

used to simulate the groundwater lateral movement, the groundwater boundary for field scale 132 

water-salt balance processes, and the groundwater level dynamics for the drainage module. In the 133 

field scale IWP module, vertical movement of water and salt in soil profile is simulated, to obtain 134 

the soil moisture and salinity of the crop root zone, and to calculate field scale irrigation water 135 

productivity. This module provides deep percolation to the groundwater module and obtains 136 

capillary rise to soil from the groundwater module. The above mentioned four modules will be 137 

described comprehensively in 2.1.2 to 2.1.5.  138 
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(2) Hydrological response units  139 

The irrigation area is spatially heterogeneous in terms of soil, land use, meteorology and 140 

groundwater. To include the spatial heterogeneities in the simulation of regional water and salt 141 

dynamics and its impact on crop growth, the irrigation district was divided into hydrological 142 

response units (HRUs) (Kalcic et al., 2015). In each HRU, soil texture and groundwater conditions 143 

are assumed to be homogeneous, but different cropping patterns can exist. For example, sunflower 144 

fields, wheat fields, maize fields and uncultivated lands. As the irrigation quota is different for 145 

different cropping patterns, the model first run field IWP model for each cropping pattern 146 

independently in each HRU, to obtain the soil water and salt dynamics, IWP, and groundwater 147 

recharge. Then, the groundwater levels and salinity of each HRU can be updated according to the 148 

area proportions of different cropping patterns in each HRU. The groundwater flow is determined 149 

by pressure head gradient between adjacent HRUs.  150 

(3) Boundary conditions 151 

The upper boundary of the model is the atmospheric boundary layer above the plant canopy, which 152 

determines reference ET, and precipitation. The main irrigation canals and drainage ditches directly 153 

connect with groundwater and can be considered as the side boundaries in the model. With the 154 

canal conveyance water loss deducted from the gross water supplied, the amount of water diverted 155 

into the field can be calculated as the actual amount of irrigation. The local irrigation schedules of 156 

different crops and the actual time of canal water supply are both considered to determine the actual 157 

irrigation time and irrigation amounts. The lower boundary is the confining bed at the bottom of 158 

phreatic layer. The phreatic layer is vitally important due to its vertical exchange with the 159 

unsaturated soil zone in each HRU and its lateral exchange with adjacent HRUs to bond the whole 160 

region together.  161 

2.1.2 Irrigation system module 162 

When irrigation water passes through canals, no matter lined or unlined, seepage loss occurs 163 

which recharges groundwater. In a large irrigation area, there are many main, sub-main, lateral, 164 

and field canals, which are categorized as the first-, second-, third-, and fourth-order canals, 165 

respectively.  During the water allocation period, canal seepage loss from different levels of 166 
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canals can be divided into two parts. One part is the seepage loss from the main and sub-main 167 

canals, which are permanently filled with water and recharge directly into groundwater along the 168 

route. The other part is the seepage loss from lateral and field canals, which are intermittently 169 

filled with water and only recharge the groundwater units within their control area. Each HRU 170 

has its corresponding groundwater unit, which is used when calculating lateral exchange of 171 

groundwater between adjacent HRUs. 172 

We calculated the decreasing water flow along canal, and water losses in main and sub-main canals 173 

as follows (Men 2000): 174 

𝜎 =
𝐴

100𝑄𝑚                                   (1) 175 

𝜎 =
𝑑𝑄

𝑄𝑑𝑙
                                     (2) 176 

where σ represents the water loss coefficient per unit length per unit flow in canal (m-1). A is the 177 

soil permeability coefficient of canal bed (m3m-1day-m), m is the soil permeability exponent of canal 178 

bed (-), and their values depend on the soil type of the canal bed (please refer to Guo (1997) for 179 

the values). Q represents the daily net flow in canal (m3day-1), and dQ represents the daily flow 180 

loss of the water conveyance within dl distance in canal (m3day-1).  181 

Thus, Eq. (1) is equal to Eq. (2), and they can be transformed into: 182 

𝑄𝑚−1𝑑𝑄 = 𝐴𝑑𝑙                              (3) 183 

Integrations of both sides of Eq. (3) gives: 184 

∫ 𝑄
𝑄𝑔

𝑄𝐿

𝑚−1
𝑑𝑄 = ∫ 𝐴

𝐿

0
𝑑𝑙                          (4) 185 

𝑄𝐿 = (𝑄𝑔
𝑚 − 𝐴𝐿𝑚)1/𝑚                         (5) 186 

where Qg is the daily gross flow in the head of canal (m3day-1), and QL is the daily net flow in 187 

canal at L distance away from canal head (m3day-1). Thus, flow loss in water conveyance process 188 

can be calculated as follows: 189 

𝑄𝐿𝑠 =
𝐴

100
(𝑄𝑔

𝑚 − 𝐴𝐿𝑚)(1−𝑚)/𝑚                     (6) 190 

𝑊𝑙𝑠 = 𝑄𝑙𝑠/(𝑛1 × 𝐴𝑠𝑢)                           (7) 191 

where QLs is the daily groundwater recharge due to water conveyance loss in main and sub-main 192 

canals (m3day-1), Wls is the groundwater recharge per unit area due to water conveyance loss in 193 

main and sub-main canals (m). n represents the total number of HRUs along selected main and 194 
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sub-main canals (-), and AHRU is the area of each HRU (m2).  195 

For lateral and field canals, they are intermittently filled with low water flow and are densely 196 

distributed in the irrigated area. Thus, it is assumed that seepage from these canals uniformly 197 

recharges groundwater units within their control area. The canal seepage is estimated by an 198 

empirical formula: 199 

𝑊𝑎𝑠 = 𝐼𝑛 ∗ 𝜂𝑚𝑐 ∗ (1 − 𝜂𝑠𝑏𝑚𝑐) + 𝐼𝑛 ∗ 𝜂𝑚𝑐 ∗ 𝜂𝑠𝑏𝑚𝑐 ∗ (1 − 𝜂𝑙𝑐) + 𝐼𝑛 ∗ 𝜂𝑚𝑐 ∗ 𝜂𝑠𝑏𝑚𝑐 ∗ 𝜂𝑙𝑐 ∗ (1 −200 

𝜂𝑓𝑐)                               (8) 201 

where Was represents daily groundwater recharge per unit area due to water conveyance loss in 202 

lateral and field canals (m), and In is daily irrigation water depth per unit area (m). ηmc, ηsbmc, ηlc 203 

and ηfc are the utilization coefficient of main, sub-main, lateral and field canals, respectively (-). 204 

2.1.3 Drainage system module 205 

In the drainage system module, only the groundwater drainage into ditches is considered. Because 206 

the precipitation directly on ditches is negligible in arid and semi-arid area. The drainage processes 207 

are simulated based on the spatial distributions of main, sub-main, and lateral ditches, which are 208 

grouped into the first-, second-, and third-order ditches, respectively. Drainage is estimated by 209 

comparing local groundwater levels and ditch bottom elevation. According to Tang et al. (2007), 210 

the groundwater drainage was calculated by: 211 

𝐷𝑔 = {
𝛾𝑑 × (ℎ𝑑𝑏 − ℎ𝑔) ；ℎ𝑑𝑏 > ℎ𝑔

        0      ; ℎ𝑑𝑏 < ℎ𝑔

                         (9) 212 

where Dg is groundwater drainage per unit area (m). γd is drainage coefficient (-), which describes 213 

the groundwater table decline caused by the elevation difference between groundwater table and the 214 

streambed of the drainage ditch. And it depends on the underlying soil conductivity and the average 215 

distance between the drainage ditches. hg represents the groundwater table depth (m), and hdb is the 216 

streambed depth of drainage ditch (m).  217 

2.1.4 Groundwater module 218 

For a plain irrigation area, usually groundwater levels are relatively flat on a large scale. In our 219 

model, it is assumed that groundwater lateral flow exists between one HRU and its four adjacent 220 
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HRUs (Fig. 2). Using water table gradient, groundwater flow between current HRU and its adjacent 221 

HRUs can be calculated by: 222 

𝑊𝑔𝑟 = (𝐾 × ℎ × 𝐵
𝐿𝑔𝑎−𝐿𝑔

𝐷
)/B2                        (10) 223 

where Wgr is the daily groundwater inflow of the current HRU from adjacent HRUs (m), and K is the 224 

permeability coefficient of unconfined aquifers in the current HRU (m). h represents the thickness 225 

of unconfined aquifers, which is the difference between water table and upper confined bed and 226 

varies with water table changes (m). B is the length of groundwater unit (m) and here the value is 227 

1km. Lga and Lg represents the water table level of adjacent HRUs and the current HRU, respectively 228 

(m). D is the distance between the center of the current HRU and the centers of its adjacent HRUs 229 

(m). There are three types of groundwater boundaries: river boundaries, drainage ditch boundaries 230 

and no flux boundaries. 231 

Based on the field scale simulation, groundwater lateral exchange, canal seepage and groundwater 232 

drainage are added in the daily water and salt balance calculations of each groundwater unit at 233 

regional scale: 234 

ℎ𝑔𝑖 = ℎ𝑔𝑖−1 − (1/𝑆𝑦)(𝑃𝑤𝑔𝑖−1 − 𝐺𝑤𝑔𝑖−1 − 𝑒𝑥𝑡𝑖−1 + 𝑊𝑔𝑟𝑢𝑝𝑖−1 + 𝑊𝑔𝑟𝑑𝑜𝑤𝑛𝑖−1 + 𝑊𝑔𝑟𝑙𝑒𝑓𝑡𝑖−1 +235 

𝑊𝑔𝑟𝑟𝑖𝑔ℎ𝑡𝑖−1 + 𝑊𝑙𝑠𝑖−1 + 𝑊𝑎𝑠𝑖−1 − 𝐷𝑔𝑖−1)                     (11) 236 

𝑆𝐶𝑎𝑖 = 𝑍𝑎 × 𝑆𝑎𝑖−1 + W𝑔𝑟𝑢𝑝𝑖−1 × 𝑆𝑎𝑢𝑝𝑖−1 + W𝑔𝑟𝑑𝑜𝑤𝑛𝑖−1 × 𝑆𝑎𝑑𝑜𝑤𝑛𝑖−1 + W𝑔𝑟left𝑖−1 ×237 

𝑆𝑎𝑙𝑒𝑓𝑡𝑖−1 + W𝑔𝑟𝑟𝑖𝑔ℎ𝑡𝑖−1 × 𝑆𝑎𝑟𝑖𝑔ℎ𝑡𝑖−1 + (W𝑙𝑠𝑖−1 + W𝑎𝑠𝑖−1) × 𝐼𝑠i−1 − D𝑔𝑖−1 × 𝑆𝑎i−1 +238 

𝑃𝑠𝑔𝑖−1−𝐺𝑠𝑔𝑖−1     (12) 239 

where Wgrup, Wgrdown, Wgrleft and Wgrright are the daily groundwater lateral runoff per unit area into 240 

the current groundwater unit from up and down or left and right adjacent groundwater unit, 241 

respectively (m). SCa is the soluble salt content in the saturated zone below the transmission soil 242 

profile (mg m-2). Za is the thickness of the saturated zone which is the difference between the 243 

groundwater table depth and the depth that groundwater table fluctuations largely cannot reach (m). 244 

Za only affect the soluble salt concentration in the groundwater salt balance, while it has no effect 245 

on the water balance and groundwater fluctuation simulation. Sa, Saup, Sadown, Saleft and Saright is the 246 

salt concentration of the current groundwater unit and its up and down or left and right adjacent 247 

groundwater units, respectively (mg m-3). Is is the salt concentration of the irrigation water (mg m-248 

3). Sy represents the specific yield (-), which is the ratio of the volume of water that can be drained 249 
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by gravity to the total volume of the saturated soil/aquifer. ext is the daily groundwater extraction 250 

per unit area (m). Pwg is the daily percolation water depth to groundwater from the potential root 251 

zone (m), and Gwg is the daily water depth supplied to the potential root zone from shallow 252 

groundwater due to the rising capillary action (m). Psg and Gsg are the quantity of soluble salt in Pwg 253 

and Gwg, respectively (mg m-2). The detailed calculations of the water and salt exchange components 254 

between unsaturated soil and groundwater, such as Pwg and Gwg, were described in our previously 255 

developed water productivity model at field scale (Xue et al., 2018). 256 

2.1.5 Field scale irrigation water productivity module 257 

Cropping patterns are complex for each HRU and sometimes HRU include uncultivated land, forest 258 

land and other non-agricultural land. In our model, with high resolution land use map, different 259 

cropping patterns can be separated to simulate soil water and salt processes, and the responses of 260 

ET and crop yields to water and salt content of root zone. Here, we employed our previously 261 

developed field IWP model to simulate field water, salt, ET and crop yield under shallow 262 

groundwater condition (Xue et al., 2018). The soil profile is vertically divided into four soil zones: 263 

the current root zone, the potential root zone, the transmission zone, and the saturated zone. In each 264 

HRU, the soil water and salt balance processes, and water productivity are independently simulated 265 

for each cropping pattern under its corresponding groundwater unit condition. For uncultivated 266 

lands, only water and salt balance are simulated, and its IWP is 0. Then, the water and salt exchange 267 

between unsaturated soil and groundwater of different cropping patterns are weighted averaged by 268 

area proportion. Finally, the weighted averages are used to updated daily groundwater table and 269 

salinity (Fig. 3). 270 

2.2 Modules coupling and calculating flowchart 271 

The simulation was by daily temporal step and by HRU spatial step. The irrigation system module 272 

simulates the canal seepage to groundwater and the field irrigation water amount. And the canal 273 

seepage to groundwater is the recharge of the groundwater module, while the field irrigation water 274 

amount is the input of the field IWP module. The drainage system module simulates the 275 

groundwater drainage to drainage ditches, which is the discharge of the groundwater module. The 276 
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groundwater module is used to simulate the groundwater table depth, which is the input of the field 277 

IWP module and also the input of the drainage module. In the field scale IWP module, the deep 278 

percolation to groundwater under different cropping patterns are simulated independently and their 279 

weighted average is the recharge of the groundwater module. The salt exchange is simulated 280 

together with water exchange. The groundwater module is used to simulate the groundwater lateral 281 

movement between the current HRU and its adjacent HRUs to update the groundwater level at next 282 

time step. By coupling the irrigation system module, drainage system module and groundwater 283 

module with the field IWP model, this RIWP model simulates the temporal and spatial distribution 284 

of IWP in the whole irrigation area from the beginning to the end of the growing season.  285 

The model was implemented in a combination of ArcGIS, MATLAB, and Microsoft Excel (Fig. 4). 286 

The HRUs was created in ArcGIS as fishnet, with each grid numbered. In MATLAB, the HRUs 287 

were represented by a matrix and the daily time step was represented by a vector. At each time step, 288 

all the HRUs were traversed by a nested loop. Then the updated information for the current time 289 

step was used to calculate the next time step.  Microsoft Excel stored ArcGIS vector layer and its 290 

attribute data for MATLAB modeling, and also stored MATLAB output results for ArcGIS analysis 291 

and visualization. 292 

Considering spatial heterogeneity, meteorological data need to be collected from all the weather 293 

stations within or close to the study area. Soil physical properties, moisture and salinity distribution 294 

in unsaturated soil, and groundwater table depth and salinity need to be collected from many 295 

observation sites uniformly or randomly covering the study area. Then, each data set can be 296 

interpolated in ArcGIS by inverse distance weight to obtain a spatial distribution vector layer. For 297 

each layer, the average value in each HRU are calculated by ArcGIS using geometric division 298 

statistics. The vector layer of irrigation control zones and the vector layer of drainage control zones 299 

is respectively overlaid with the HRU division layer in ArcGIS, to obtain the HRU numbers 300 

controlled by each irrigation control zone and each drainage control zone. The HRU numbers 301 

controlled by the same zone are stored in the same matrix for batch simulation in MATLAB. In 302 

MATLAB, soil water and salt balances and field scale IWP for main crops are simulated 303 

simultaneously for each HRU; whereas, groundwater lateral exchange are simulated between 304 

adjacent HRUs. At the end of the model simulation, soil moisture and salinity, groundwater table 305 
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depth and salinity, ET, crop yield and IWP for different land use types in each HRU can be obtained. 306 

Then, the area proportion weighted average in each HRU can be imported into ArcGIS to visualize 307 

the spatial distribution. 308 

2.2 Model evaluation 309 

We will provide a case study using the above developed new RIWP model, to test its applicability, 310 

and to provide sensitivity analysis of the parameters. 311 

2.3.1 Description of study area and data 312 

As a typical sub-district of the Hetao Irrigation District, the Jiefangzha Irrigation District (JFID) is 313 

a typical arid irrigation area with shallow groundwater, resulted from its arid continental climate, 314 

flood irrigation year after year, and desperate drainage systems (Fig. 5). Located in the Hetao Plain, 315 

the JFID is very flat with an average slope of 0.02% from southeast to northwest (Xu et al., 2011). 316 

The mean annual precipitation is only 155 mm, of which 70% occurs between July to September; 317 

while the mean annual potential evaporation is 1938 mm. The mean annual temperature is 7℃, with 318 

the lowest and highest monthly average being -10.1℃ and 23.8℃ in January and July, respectively. 319 

The JFID covers an area of 1.12 Mha, of which 66% is irrigated farmland area. Wheat, maize and 320 

sunflower as the main crops in this region, taking up more than 90% of the irrigated farmland area. 321 

The 12×108 m3 annual irrigation water is diverted from the Yellow River. Due to the poor 322 

maintenance of drainage ditches, it is quite common in this area to have poor drainage situations. 323 

Therefore, the annual average groundwater table depth ranges from 1.5 to 3.0 m during the crop 324 

growing season. Soils in the JFID are spatially heterogeneous and primarily composed of silt loam 325 

in the northern region and sandy loam in the southern region. Shallow groundwater table and strong 326 

evaporation makes soil salinization a very serious problem in this area, which is becoming the main 327 

constraint of crop production. 328 

An irrigation and drainage network include four main irrigation canals, sixteen sub-main irrigation 329 

canals, five main drainage ditches, and twelve sub-main drainage ditches are controlling the water 330 

movement in the JFID (Fig. 5). The streambed depths of the regional main, sub-main and lateral 331 

ditches were collected by a regional survey in 2006. Daily water flow data in the main and sub-main 332 
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irrigation canals and monthly data of the five main drainage ditches were obtained from the local 333 

Irrigation Administration Bureau. A total of 55 groundwater observation wells are installed in the 334 

JFID (Fig. 5). Groundwater level was measured on the 1st, 6th, 11th, 16th, 21th and 26th of each month, 335 

and groundwater salinity was measured 3 times each month. Near the groundwater observation wells, 336 

soil moisture was measured four times, and soil electrical conductivity was measured once before 337 

wheat sowing and once before autumn irrigation. Due to the spatially homogeneous climate in JFID, 338 

daily meteorological data (air temperature, humidity, wind speed and precipitation) was obtained 339 

from Hangjinghouqi weather station for the calculation of regional reference ET.  340 

HJ-1A, HJ-1B and Landsat NDVI images with 30 m resolution during the period of 2006-2013 were 341 

downloaded from the official website of China Centre for Resources Satellite Data and Application 342 

(2013) and USGS (2013), to determine the annual cropping pattern distributions. Due to the lack of 343 

measured ET, the ET estimated by SEBAL model using MODIS images from NASA (2013) was 344 

used as a reference to compare with simulated ET values (Bastiaanssen et al., 2003b). 345 

2.3.2 Model application 346 

The JFID was divided into 2485 1km×1km HRUs (Fig. S1a in the supplementary material). In 347 

terms of boundary conditions, the upper Quaternary 4 aquifer layer was regarded as the phreatic 348 

layer in the model. It was modeled as an aquitard with loamy soil. From north to south, the thickness 349 

of aquifer in JFID varies from 2 to 20m with an average of 7.4m (Bai et al., 2008). Thus, the initial 350 

value of the average thickness of unconfined aquifer is set as 7.4m. The water level contour maps 351 

of JFID during 1997-2002 by Bai (200) were used to determine the direction of water flow near the 352 

groundwater boundary. Based on the topography conditions, land-use types, locations of main 353 

canals and ditches, and directions of water flow, the regional phreatic layer was divided into 5 zones 354 

with river, drainage and impervious boundary conditions (Fig. S1b).  355 

The JFID was divided into four irrigation control sections and five drainage control sections, each 356 

section was controlled by one main irrigation canal or one main drainage ditch. These sections were 357 

further divided into 48 irrigation control sub-areas and 17 drainage control sub-areas, each sub-area 358 

was controlled by one sub-main irrigation canal or one sub-main drainage ditch (Fig. S2). The 359 

sunflower fields, wheat fields, maize fields and uncultivated lands are the four cropping patterns, 360 
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i.e., land-use types, in the RIWP model. The irrigation time and irrigation water amount of each 361 

HRU were determined by both the local irrigation schedule of the three main crops, and the actual 362 

water amount flowing into the fields.  363 

The simulation period was from April 1st to September 20th, coving the growing season of all the 364 

three main crops. The initial crop parameters were set as the default values suggested for sunflower, 365 

wheat, and maize by Allen et al. (1998). The empirical values of regional canal utilization and ditch 366 

drainage coefficient were obtained from Jiefangzha administration. 367 

To comprehensively evaluate the accuracy and reliability of the model, the data in years 2010-2013 368 

and in years 2006-2009 was respectively used as calibration and validation dataset. The soil 369 

moisture content of root zone (θ), electrical conductivity of soil water (EC), groundwater table 370 

depth (hg) and groundwater salinity, were calibrated with measured data from the 22 soil water and 371 

salt observation sites and 55 groundwater observation sites (Fig. 5). The RIWP simulated regional 372 

ET was calibrated by the ET data obtained from remote sensing images once per 8 days. The 373 

regional drainage processes was calibrated by the monthly groundwater drainage data from main 374 

ditches. Overall, the soil hydraulic parameters, the crop water productivity related coefficient, and 375 

the canal conveyance and ditch drainage parameters were all calibrated with observed data in years 376 

2010-2013, and then validated with observed data in years 2006-2009.  377 

To quantify the model performance, the root mean square error (RMSE), the Nash and Sutcliffe 378 

model efficiency (NSE) and the coefficient of determination (R2) were used as the indicators. 379 

RMSE was used to measure the deviation of simulated values from the measured ones, NSE was 380 

commonly used to verify the credibility of the hydrological model, and R2 represented the degree 381 

of linear correlation. The indicators were calculated as follows: 382 

  𝑅𝑀𝑆𝐸 = [
∑ (𝑂𝑢𝑡𝑝𝑢𝑡𝑠−𝑂𝑢𝑡𝑝𝑢𝑡𝑜)2𝑛

𝑖=1

𝑛
]

0.5

                          (13) 383 

𝑁𝑆𝐸 = 1 −
∑ (𝑂𝑢𝑡𝑝𝑢𝑡𝑠−𝑂𝑢𝑡𝑝𝑢𝑡𝑜)𝑛

𝑖=1
2

∑ (𝑂𝑢𝑡𝑝𝑢𝑡𝑜−𝑂𝑢𝑡𝑝𝑢𝑡𝑚)𝑛
𝑖=1

2                           (14) 384 

  𝑅2 = 1 −
∑ (𝑂𝑢𝑡𝑝𝑢𝑡𝑜−𝑂𝑢𝑡𝑝𝑢𝑡𝑜̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ )𝑛

𝑖=1 (𝑂𝑢𝑡𝑝𝑢𝑡𝑠−𝑂𝑢𝑡𝑝𝑢𝑡𝑠̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ )

√∑ (𝑂𝑢𝑡𝑝𝑢𝑡𝑜−𝑂𝑢𝑡𝑝𝑢𝑡𝑜̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ )𝑛
𝑖=1

2√∑ (𝑂𝑢𝑡𝑝𝑢𝑡𝑠−𝑂𝑢𝑡𝑝𝑢𝑡𝑠̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ )𝑛
𝑖=1

2
           (15) 385 

where n is the number of simulations; Outputs and Outputo are simulated and observed values of 386 

model outputs, respectively; 𝑂𝑢𝑡𝑝𝑢𝑡𝑠
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ and 𝑂𝑢𝑡𝑝𝑢𝑡𝑜

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ are the average values of simulated and 387 
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observed model outputs, respectively. A model performs well when NSE and R2 are close to 1, and 388 

RMSE is close to 0, indicate good model performance. For NSE, particularly, a zero value means 389 

that the prediction is not better than taking an average, and a negative value means that the 390 

prediction is worse than taking an average.  391 

2.3.4 Global sensitivity analysis 392 

To find the key parameters significantly impacting the model output, a global sensitivity analysis 393 

was conducted. The analysis related the changes in three output variables—RIWP, groundwater 394 

table depth and groundwater salinity—to eight parameters in the RIWP model. The Latin Hypercube 395 

Sampling (LHS) (please see Mckay, 1979; Muleta et al., 2005; Wang et al., 2008 for detailed 396 

descriptions of the sampling method), a typical sampling method for sensitivity and uncertainty 397 

analysis, was used to sample the parameter space. According to Dai (2011), to ensure that the test 398 

points were evenly distributed in space and to guarantee the accuracy of the test, the test number 399 

was set as 20, more than double of the parameter number which was 8. Additionally, considering 400 

the spatial heterogeneity of the three output variables, 22 evenly distributed groundwater 401 

observation sites in JFID were selected for the global sensitivity analysis. Based on the LHS method, 402 

20 groups of parameter combinations were obtained and the simulation was run for 20 times. Finally, 403 

the sensitivity of the three output variables to the eight parameters were determined in 404 

SPSS Statistics. The absolute values of the obtained Standardized Regression Coefficients (SRCs) 405 

quantified the significance of each parameter to each output variable (Table 1) (Cheng et al., 2018; 406 

Cannavó, 2012). And the plus or minus sign of the SRCs indicated the positive or negative 407 

correlations between the corresponding parameter and output variable pairs.  408 

3. Results and Discussion 409 

3.1 Model performance 410 

Table 2 tabulated the calibrated parameters describing crop growth and water usage, and Table 3 411 

tabulated the variation range and calibrated values of the parameters describing soil hydraulic 412 

characteristics and irrigation and drainage system. The agreement between the observed and 413 

simulated soil moisture content in crop root zone both in calibration (Fig. 6a, RMSE=2.867 cm cm-414 
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3, NSE=0.330, R2=0.502) and validation (Fig. 6b, RMSE=2.989 cm cm-3, NSE=0.232, R2=0.548) 415 

indicates the good performance of the RIWP model. The good performance of the RIWP model was 416 

also indicated by the simulation of the soil salt content both in calibration (Fig. 6c, RMSE=2.867 cm 417 

cm-3, NSE=0.612, R2=0.657) and validation (Fig. 6d, RMSE=1.205 dS m-1, NSE=0.525, R2=0.590). 418 

The simulated and observed groundwater table depth (Fig. 6e, RMSE=0.786m, NSE=0.424 and 419 

R2=0.509 in calibration; Fig. 6f, RMSE=0.667m, NSE=0.637 and R2=0.504 in validation) and 420 

groundwater salinity (Fig. 6g, RMSE<10%, NSE=0.813 and R2=0.815  in calibration; Fig. 6h, 421 

RMSE<10%, NSE=0.604 and R2=0.730 in validation) at 55 observation sites are in good agreement 422 

as well.  423 

The overestimated drainage (Fig. 6i-j) was due to the different operating conditions of the drainage 424 

ditches of the same order. Remember that we classified the main, sub-main and lateral drainage 425 

ditches into the first-, second and third-order ditches, respectively. In the model, for each year, all 426 

the ditches of the same order share the same the drainage coefficient, assuming a well operated 427 

condition. However, the actual operating conditions of the ditches of the same order cannot be the 428 

same, resulting in the simulation discrepancy. 429 

The ET simulated by the RIWP model (ETIWP) and the ET estimated by the SEBAL model using 430 

MODIS images (ETRS) agrees well both in calibration (RMSE=1.918mm, NSE=0.274 and R2 = 431 

0.561) and in validation (RMSE=2.132mm, NSE =0.189 and R2 =0.498) (Fig. 6l). Furthermore, the 432 

comparison of the spatial distribution of cumulative ETIWP and ETRS during crop growth season 433 

showed that ETIWP was lower than ETRS in uncultivated area, while they agreed well in farmland 434 

(Fig. S3). The uncultivated area, merely bare soil, accounted for about 34% of the JFID, and the 435 

ETIWP of uncultivated area was merely soil evaporation. This , resulted in the underestimation of 436 

actual ET in uncultivated area compared to the ET acquired by remote sensing images, which was 437 

consistent with previous studies (Singh, 2005; Tian et al., 2015).  438 

To test the model performances under different cropping patterns, one representative site was 439 

selected for each cropping pattern to compare the observed and simulated time series of groundwater 440 

table depth (Fig. 7). The model can adequately capture the groundwater dynamics at the four 441 

representative sites. Occasionally, the simulated groundwater table depth declines fast, while the 442 

observed value rises. This is most likely due to the fact that we ignored the time lag between 443 
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groundwater recharge from soil and deep percolation. 444 

3.2 Global sensitivity analysis 445 

Recall that the global sensitivity analysis was to determine the sensitivity of the three output 446 

variables to eight parameters. The three output variables were RIWP, groundwater table depth, and 447 

groundwater salinity; while, the eight parameters were those parameters describing soil hydraulic 448 

characteristics and irrigation and drainage system, tabulated in Table 3. Specific yield (Sy), followed 449 

by soil evaporation coefficient (Ke), are the two key parameters influencing the RIWP (Fig. 8a). The 450 

specific yield indicated the readily available groundwater for crop consumption. Thus, its significant 451 

positive influence on RIWP was explained. The soil evaporation coefficient indicated the proportion 452 

of water that transferred into the atmosphere but was not used by crops. Therefore, its significant 453 

negative impact on RIWP was expected. And for both groundwater table depth (Fig. 8b) and 454 

groundwater salinity (Fig. 8c), specific yield was the only key parameter. Canal seepage was 455 

expected to cause the variation of groundwater table depth around the canal at the local scale. 456 

However, the results indicated that the variation of groundwater table depth would be more 457 

susceptible to the local groundwater properties, i.e., specific field, than to canal seepage at the 458 

regional scale. We speculate that the lateral groundwater movement might compensate the variation 459 

of groundwater table depth caused by the canal seepage. Salt moves with water. Thus, the variation 460 

of groundwater salinity was also dominated by the specific yield .  461 

3.3 Regional irrigation water productivity 462 

3.3.1 Spatial distribution of irrigation water productivity 463 

Validated by the measured soil moisture and salinity, groundwater table depth and salinity, drainage 464 

water depth and ET, especially, the year 2006-2013 time series of groundwater table depth under 465 

the four cropping patterns, the developed RIWP model can be used to estimate the spatial 466 

distribution of IWP for the three main crops over the period of 2006-2013 (Fig. 9). The RIWP of the 467 

three main crops showed a trend of decline during the period of 2006-2010 (Fig. 9a-e).This was 468 

mainly attributed to the increasing irrigation quota, as the excess water lowered the IWP. Whereas, 469 
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during the period of 2011-2013 (Fig. 9f-h), the RIWP of the three main crops showed an increasing 470 

trend. This was because that the irrigation quota was reduced over this period, and the contribution 471 

of groundwater compensated the crop yield losses.  472 

Under a given irrigation water distribution, the spatial distribution of ET was the key factor 473 

controlling the RIWP distribution. And the spatial distribution of ET was fundamentally determined 474 

by the solar energy, and the water and salt dynamics of soil. Recall that the climate and, therefore, 475 

the solar energy, was homogeneous in JFID. Then, the spatial heterogeneity of RIWP must be 476 

attributed to the water and salt heterogeneity caused by the spatial heterogeneity of the cropping 477 

pattern, groundwater table depth, and irrigation and drainage networks. Particularly, when the 478 

farmlands had limited supply of irrigation water, the groundwater table depth and salinity played an 479 

important role on IWP. 480 

The comparison between the RIWP of different crops (comparing the three columns in Fig. 9) 481 

showed that maize had the highest IWP, wheat had the lowest IWP, and the IWP of sunflower was 482 

in the middle. Therefore, modestly increasing the planting area of maize will improve the crop 483 

production per unit irrigation water amount. In addition, the RIWP of sunflower is a little higher 484 

than that of wheat, and the benefit and the salt tolerance of sunflower are both much higher than 485 

those of wheat. Thus, planting sunflowers should be promoted in the JFID.   486 

3.2.2 The impact of irrigation water depth and groundwater table depth on 487 

irrigation water productivity 488 

In arid shallow groundwater area, irrigation water productivity (IWP) is affected by irrigation water 489 

depth (IWD) and groundwater table depth (hg). In all the four simulated hg ranges, IWP decreased 490 

when IWD increased (Fig. 10a), which was consistent with Huang et al. (2005). Moreover, the 491 

magnitude of IWP decrease per unit increase of IWD was different under different hg ranges. The 492 

magnitude of IWP decrease under shallower hg was smaller than that under deeper hg. This effect of 493 

increasing hg on the relationship between IWP and IWD was consistent with Gao et al. (2017). The 494 

above results indicate that when irrigation water is insufficient, groundwater can compensate the 495 

crop water demand. However, when irrigation water is excessive, a large proportion will eventually 496 

drain through the drainage ditches, and the IWP drops. Additionally, among the four hg ranges, the 497 
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highest IWP was obtained in the range of 2-3m (Fig. 10b), which was consistent with Xue et al. 498 

(2018). This indicates that a hg deeper than that provides insufficient water for crop growth; whereas, 499 

a hg shallower than that will increase root zone soil salinity and salt stress of crops. The negative 500 

effect of shallow groundwater salinity can also be found in Fig. 10a when hg is less than 2m, and it 501 

indicates that irrigation applied decreasing from 300<IWD<400mm to 200<IWD<300mm lead to 502 

not increase but slightly decrease of IWP, which is caused by more reduction of ET. Shallow buried 503 

groundwater contribution will make up for ET reduction when smaller irrigation water applied, thus 504 

there exists another reason accelerate the reduction of ET, which is less irrigation water will weaken 505 

the role of irrigation on salt leaching and result in more severe salinization in crop root zone. Thus, 506 

reasonably determining the irrigation quota and constantly maintaining the drainage system to keep 507 

the groundwater table depth in the optimal range is of great importance to reach higher crop IWP at 508 

the regional scale. 509 

4. Conclusions  510 

In view of the particularity of irrigated areas, taking fully consideration of the supply, 511 

consumption and drainage processes of irrigation water and groundwater, a distributed RIWP 512 

model was developed to couple the irrigation water flow processes along main canals and drainage 513 

processes, water and salt transport processes in soil profile, groundwater water and salt lateral 514 

transport, and agricultural water productivity module. Especially, a new method was designed and 515 

incorporated to couple regional soil hydrology process and groundwater flow, with the spatial 516 

difference of cropping pattern. Taking advantages of remote sensing and GIS tools, the 517 

quantitative distributed RIWP model needs fewer soil and groundwater hydraulic parameters and 518 

crop growing parameters and only readily available data of several observation sites at the 519 

regional scale, and regional water and salt process can be simulated on a daily time step. Despite 520 

the simplifications involved, the proposed methods of irrigation canal and drainage ditches 521 

digitization and groundwater-runoff lateral exchange simulation between grids make the spatial 522 

IWP simulation in a real distributed way, instead of using a field scale model applied in a 523 

distributed mode to simulate all simulation units independently. The calibration and validation 524 

results indicates a good performance of RIWP model applied in this typic study area, and spatial 525 

https://doi.org/10.5194/hess-2019-359
Preprint. Discussion started: 12 August 2019
c© Author(s) 2019. CC BY 4.0 License.



 

20 
 

distribution of IWP for different crops can be produced.  526 
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 Table Captions 670 

Table 1. The significance level of the input parameter to the model output variables 671 

Table 2. Calibrated crop parameters of wheat, sunflower and maize for regional irrigation water 672 

productivity model 673 

Table 3. The variation range and calibrated values of the parameters describing soil hydraulic 674 

characteristics and irrigation and drainage system.  675 
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Table 1. The significance level of the input parameter to the model output variables 699 

SRC value Significance level 

  0.8≤|SRC|≤1 Very important 

0.5≤|SRC|≤0.8 Important 

0.3≤|SRC|≤0.5 Unimportant 

 0≤|SRC|≤0.3 Irrelevant 

 700 

Table 2. Calibrated crop parameters of wheat, sunflower and maize for regional irrigation water 701 

productivity model 702 

Parameters 
Calibrated value 

Wheat Sunflower Maize 

Rate of yield decrease per unit of excess salts, b 

(%/(ds/m)) 
7.1 12 12 

Average fraction of TAW that can be depleted from 

the root zone before moisture stress, p (-) 
0.55 0.45 0.55 

Crop coefficient at crop initial stage, kc1 (-) 0.3 0.3 0.3 

Crop coefficient at crop development stage, kc2 (-) 0.73 0.8 0.75 

Crop coefficient at mid-season stage, kc3 (-) 1.15 1 1.2 

Crop coefficient at last season stage, kc4 (-) 0.4 0.7 0.6 

Yield response factor, Ky (-) 1.15 0.95 1.25 

Electrical conductivity of the saturation extract at the 

threshold of ECe when crop yield firstly reduces 

below Ym at last season stage, ECet (dS/m) 

5 1.7 2 

 703 

Table 3. The variation range and calibrated values of the parameters describing soil hydraulic 704 

characteristics and irrigation and drainage system.  705 

Parameters Description 
Value range Calibrated 

value Min Max 

Ke Soil evaporation coefficient, (-) 0.1 0.35 0.25 

ηlc 
Water utilization coefficient of lateral 

canal, (-) 
0.81 0.91 0.88 

ηfc 
Water utilization coefficient of field 

canal, (-) 
0.81 0.86 0.89 

Sy Specific yield, (-) 0.02 0.15 0.15 

γd Drainage coefficient, (-) 0.02 0.06 0.03 

K 
Permeability coefficient of unconfined 

aquifers, (mm/day) 
731 12701 1150 

A Soil water permeability coefficient, (-) 0.7 3.4 3.4 

m Soil water permeability exponent, (-) 0.3 0.5 0.5 

 706 
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Figure Captions 707 

Fig.1. Schematic diagram of the conceptual RIWP model and the coupling between its sub-708 

modules. 709 

Fig.2. Schematic diagram of groundwater lateral runoff exchange between HRUs.  710 

Fig.3. Schematic diagram of coupling soil water and salt dynamics, and groundwater level and 711 

salinity. And the IWP evaluation in each HRU.  712 

Fig.4. Procedure chart of regional irrigation water productivity simulation. 713 

Fig.5. Location of the Jiefangzha Irrigation District. 714 

Fig.6. Relationship between the simulated and measured values during the crop growing season in 715 

calibration and validation period.  716 

Fig.7. The comparison of the simulated and measured groundwater table depth for 4 typical sites 717 

during the crop growing season in the years of 2006-2013. (Note: a- uncultivated area during the 718 

years of 2006-2013; b- uncultivated area from 2006-2008, and sunflower field and maize field 719 

from 2009-2013; c, d- sunflower, wheat and maize field in the years of 2006-2013) 720 

Fig.8. Parameter sensitivity analysis results of model for the three output variables: (a) irrigation 721 

water productivity, (b) groundwater table depth and (c) groundwater salinity. 722 

Fig.9. Spatial distribution of irrigation water productivity for the three main crops during the 723 

period of 2006-2013. Each line shows the RIWP for each year by ascending order. The left, middle 724 

and right column shows the RIWP of wheat, sunflower and maize, respectively.   725 

Fig.10. (a) Simulated regional irrigation water productivity under various groundwater table depth 726 

(hg) conditions with different irrigation water amount (In) applied, and (b) its statistical analysis 727 

results. In Fig.10a, W, S and M represents wheat, sunflower and maize, respectively 728 
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 735 

Fig.1. Schematic diagram of the conceptual RIWP model and the coupling between its sub-736 

modules.  737 

 738 

 739 

Fig.2. Schematic diagram of groundwater lateral exchange between adjacent HRUs.  740 

 741 

Fig.3. Schematic diagram of coupling soil water and salt dynamics, and groundwater level and 742 

salinity. And the IWP evaluation in each HRU.  743 
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 744 

Fig.4. Procedure chart of regional irrigation water productivity simulation. 745 

 746 

 747 

 748 

Fig.5. Location of the Jiefangzha Irrigation District. 749 
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  757 

 758 

 759 

Fig.6. Relationship between the simulated and measured values during the crop growing season in 760 

calibration and validation period.  761 
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762 

763 

764 

 765 

Fig.7. The comparison of the simulated and measured groundwater table depth for 4 typical sites 766 

during the crop growing season in the years of 2006-2013. (Note: a- uncultivated area during the 767 

years of 2006-2013; b- uncultivated area from 2006-2008, and sunflower field and maize field 768 

from 2009-2013; c, d- sunflower, wheat and maize field in the years of 2006-2013) 769 
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770 

771 

 772 
Fig.8. Parameter sensitivity analysis results of model for the three output variables: (a) irrigation 773 

water productivity, (b) groundwater table depth and (c) groundwater salinity. 774 
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  783 

(e) 784 

  785 

(f) 786 

  787 

(g) 788 

  789 

(h) 790 

Fig.9. Spatial distribution of irrigation water productivity for the three main crops during the 791 
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period of 2006-2013. Each line shows the RIWP for each year by ascending order. The left, middle 792 

and right column shows the RIWP of wheat, sunflower and maize, respectively.   793 

 794 

 795 

 796 
Fig.10. (a) Simulated regional irrigation water productivity under various groundwater table depth 797 

(hg) conditions with different irrigation water amount (In) applied, and (b) its statistical analysis 798 

results. In Fig.10a, W, S and M represents wheat, sunflower and maize, respectively. 799 
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